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As shown in recent experiments �Auslaender et al., Nat. Phys. 5, 35 �2009�� magnetic force microscopy
permits one not only to image but also to manipulate an individual vortex in type-II superconductors, and this
manipulation provides a new powerful tool to study vortex dynamics and pinning. We derive equations that
describe the deformation of an individual vortex in an anisotropic biaxial type-II superconductor under the
action of the microscope’s magnetic tip. These equations take into account the driving force generated by the
tip, the elastic force caused by the vortex deformation, and the pinning force exerted by point defects. Using
these equations, we reproduce the main features of the experimental data obtained by Auslaender et al.
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I. INTRODUCTION

In a recent paper1 magnetic force microscopy �MFM� was
employed to image and manipulate individual vortices in a
single-crystal YBa2Cu3O6.991, directly measuring the interac-
tion of a moving vortex with the local disorder potential.
Several unexpected results were obtained in that paper. In
particular, the authors of Ref. 1 found a dramatic enhance-
ment of the response of a vortex to pulling when they
wiggled it transversely. In addition, they discovered en-
hanced vortex pinning anisotropy in this crystal. These re-
sults demonstrate the power of MFM to probe microscopic
defects that cause pinning and show that the described ma-
nipulations of an individual vortex provide a new powerful
tool for studying the vortex dynamics and vortex pinning in
type-II superconductors.

In this paper we derive equations that govern the vortex
dynamics under such MFM manipulations, and by solving
these equations numerically, we provide some insight into
the results of Ref. 1.

II. EQUATIONS FOR A MOVING VORTEX

Consider a platelet-shaped biaxial anisotropic supercon-
ductor, with its crystalline c axis being perpendicular to the
plane of the platelet �and the a and b axes in this plane�. Let
there be a vortex directed along the c axis in the sample. We
denote this axis as the z axis, and choose the x and y axes
along the a and b axes of the crystal. MFM employs a sharp
magnetic tip placed near the surface of the platelet. The tip
magnetization exerts an attractive force F on the vortex end.
This force can shift the top of the vortex when the tip moves.
On the other hand, it is possible to measure �Fz /�z at the tip,
and this permits one to visualize the position of the top end
of the vortex.1,2 Let X, Y be the position of the tip in the x-y
plane, while its height above the surface of the platelet be Z.
We shall describe the shape of the vortex by the functions
x�z� and y�z� with z�0, the position of the vortex end at the
surface is thus x0�x�0�, y0�y�0�. Below we shall use the
following dependence of the force F on height Z and on the
two-dimensional �2D� vector R��X−x0 ,Y −y0� �Refs. 1 and
3�:

F = q
R + �Z + h0�ẑ

�R2 + �Z + h0�2�3/2 , �1�

where the constant h0�� �� is on the order of the London
penetration depth�, q= m̃�0 /2�, �0 is the flux quantum, m̃ is
the magnetic monopole strength of the tip �or the magnetic
moment per unit length of a long narrow cylinder used as
tip�, and ẑ is the unit vector along the z axis. This depen-
dence is obtained if one considers the tip and the end of a
straight vortex as magnetic monopoles of strengths m̃ and
2�0 /�0.4 The lateral component of F, Flat, gives the driving
force acting on the vortex. The maximum of Flat with respect
to variations of R is reached at R= �Z+h0� /�2 and is equal
to5 Fm�0.385q / �Z+h0�2. In our following numerical calcu-
lations we shall use formula �1� even when the vortex is
curved, and to describe the lateral component fex

� dz of the
external driving force applied to a vortex segment which has
the projection dz on the z axis, we shall employ the model
expression

fex
� = q

R

�R2 + �Z + h0�2�3/2
exp�− 	z	/��

�
. �2�

This expression can be justified if the change in the total
lateral force Flat on the scale � in the x-y plane is relatively
small �i.e., if R���. However, in the case when the vortex
shift �x0

2+y0
2�1/2 caused by the tip is essentially larger than �,

this shift is practically independent of the specific form of
the z dependence of fex

� �see below�. So, to clarify the physics
without additional mathematical complications, below we
shall always use the model dependences �1� and �2�.

As it was mentioned above, measurement of �Fz /�z is
employed to visualize the vortex. Equation �1� yields the
following expression for this derivative:


 �Fz

�z

 = q

	2�Z + h0�2 − R2	
�R2 + �Z + h0�2�5/2 . �3�

This derivative is maximum 	�Fz /�z	max=2q / �Z+h0�3 when
the tip is just above the vortex, i.e., when X=x0, and Y =y0.
On the other hand, the maximum lateral force occurs when

PHYSICAL REVIEW B 80, 054513 �2009�

1098-0121/2009/80�5�/054513�10� ©2009 The American Physical Society054513-1

http://dx.doi.org/10.1103/PhysRevB.80.054513


R= �Z+h0� /�2, and hence 	�Fz /�z	=q�2 /3�3/2 / �Z+h0�3

�0.27	�Fz /�z	max at this R. In other words, the maximum of
the lateral force and the maximum of 	�Fz /�z	 occur at dif-
ferent positions of the tip and of the vortex end.

We shall consider the vortex as an elastic string. In the
case of a biaxial superconductor the line tension of the vor-
tex, �l�� ,	 ,
�, and the pinning force acting on its unit
length, fp�� ,	 ,
�, were calculated in Ref. 6. The angles �
and 	 define the direction of the vortex, i.e., we shall de-
scribe this direction by the unit vector

�sin � cos 	,sin � sin 	,cos �� =
�x�,y�,1�

�1 + x�2 + y�2
, �4�

while the angle 
 defines the direction of the pinning force or
of the vortex distortion in the plane perpendicular to the
vortex, Fig. 1. Here the prime means d /dz. In the subsequent
analysis the line tension will be required only for the case
�=0 since the linear elasticity theory is valid up to suffi-
ciently large angles � if the parameter � is small.7 Then, we
have1,6

�l�	,
� = �0�2��	 + 
� � �l�	 + 
� , �5�

where ���ab /�c is the parameter of the anisotropy; �0
= ��0 /�ab�2ln��ab /�ab� / �4��0�; �ab=��a�b; �c, �a, and �b
are the London penetration depths, 
=�a /�b is the parameter
of the anisotropy in the a-b plane, and

��	� = 
 cos2 	 + 
−1 sin2 	 . �6�

Since at �=0 the plane perpendicular to the vortex coincides
with the x-y plane, the combination 	+
 in Eq. �5� is the
angle defining the direction of the vortex distortion in this
plane relative to the x axis.8 As to the pinning force, it is
described by the expression6

fp��,	,
� = fp
c �ab cos �

���,	,
�
, �7�

where fp
c is the pinning force for the vortex along the c axis

in the uniaxial superconductor with the same �ab and �ab

=��a�b. Here �a and �b are the coherence lengths, and

�2��,	,
� = �ab
2 �
�sin 	 cos 
 cos � + cos 	 sin 
�2

+
1



�cos 	 cos 
 cos � − sin 	 sin 
�2� . �8�

In YBa2Cu3O6.99 one has9 ��1 /7 �i.e., �2�1� and1,9 

�1.3.

Consider a vortex segment limited by the planes z and z
+dz and specified by the angles � and 	. Let us analyze the
balance of the driving, the pinning, and the elastic forces
applied to this segment. All these forces are perpendicular to
it. However, to find the two functions x�z� and y�z� describ-
ing the vortex, it is convenient to carry out the analysis in the
x-y plane, projecting all the forces onto this plane. The pro-
jection of the elastic force acting on this segment, fel

� dz, can
be described by the simple expression fel

� dz= ��lxx� ,�lyy��dz
even at sufficiently large � since the linear elasticity theory is
valid up to the angles satisfying �2 tan2 ��1.7 Here �lx
=�l�0�=�0�2
 and �ly =�l�� /2�=�0�2 /
 are the appropriate
line tensions at �=0 �see Eqs. �5� and �6��. Adding this pro-
jection of the elastic force to the external force defined by
Eq. �2�, one obtains the projection f�dz of the resultant force
fdz on the x-y plane. Then, the first of two equations for x�z�
and y�z� is

f ��x,y,X,Y� = fc
� , �9�

where fc
� is the absolute value of the projection of the so-

called critical force6 on the x-y plane. This critical force is
the force at which the vortex starts to move. It is determined
by the pinning force, but in the anisotropic superconductor it
can differ from the pinning force.6 Note that we write one
Eq. �9� which connects the absolute values of f� and fc

� rather
than two equations for the x and y components of these
forces. This is due to the fact that the direction of the pinning
force �and hence of the critical force� is not known in ad-
vance and is dictated by the direction of f�.

The critical force fc
� is determined by the following for-

mulas: let the direction of the force f be specified by the
angle 
 in the plane perpendicular to the vortex. This angle
can be expressed in terms of the component fx

� and fy
� of the

force f� as follows:

tan 
 =
cos ��fy

� − fx
� tan	�

fx
� + fy

� tan	
. �10�

The pinning force fp in the direction 
 is given by Eqs. �7�
and �8�, while the critical force fc in this direction 
 is de-
termined by6

tan�
 − 
1� =
fp��
1�

�fp�
1��
, �11�

fc�
� = ��fp�
1��2 + �fp��
1��2, �12�

where the prime means d /d
1, and the angle 
1 in the plane
perpendicular to the vortex defines the direction along which
the vortex starts to move when the force acting along 

exceeds fc. The fact that 
1 in general differs from 
 is due

θ

φ

ψ

y, b

z, c

x, a

vortex line

distortion

FIG. 1. Definition of the angles �, 	, and 
. The angles � and 	
specify the direction of the vortex shown as bold solid line. The
angle 
 in the plane perpendicular to the vortex defines the direc-
tion of the pinning force; 
 is measured from the line that is the
intersection of this plane with the plane containing the vortex and
the z axis.
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to the anisotropy of the pinning. On determining 
1 from Eq.
�11�, one then finds fc�
� from formula �12�. The explicit
form of Eqs. �11� and �12� for the case of the pinning force
described by formulas �7� and �8� is presented in Appendix
A. Finally, when the critical force fc�
� is found, its projec-
tion fc

� on the x-y plane is determined by the formula

fc
� = fc�
�

�cos2 � cos2 
 + sin2 
�1/2

cos �
, �13�

that follows from geometrical considerations.
Equation �9� is a differential equation since it contains the

derivatives x��z� and y��z� originating from the elastic force.
As in Ref. 1, we shall consider only sufficiently thick super-
conducting crystals in which the vortex as a whole does not
shift, and only its upper part �0�z�z0� adjoining the x-y
surface moves, while the lower part �z�z0� is pinned. The
boundary point z0 of this upper part is determined by

x�z0� = y�z0� = 0. �14�

Then, the boundary conditions to Eq. �9� are

x��z0� = y��z0� = 0, �15�

x��0� = y��0� = 0. �16�

If these conditions were not fulfilled, the derivatives x� and
y� would be discontinuous at the points z=z0 and z=0, and
the elastic force ��lxx� ,�lyy�� would be singular there.10 In
the most interesting case when x0

2+y0
2��2 �and hence 	z0	

���, one can put �→0. In this limiting case the driving-
force F is applied to the vortex only at its surface point
�x0 ,y0�. Then, in Eq. �9� the force fex

� can be omitted, f�

coincides with fel
� , and the driving-force F only modifies the

boundary condition �16�. Now the integration of the forces
over the thickness of the surface layer gives

x��0� =
Fx

�lx
, y��0� =

Fy

�ly
. �17�

This result shows that at small � the vortex dynamics is
practically independent of the distribution of the driving-
force F over the surface layer of thickness �.

Equation �9� alone is not sufficient to find the two func-
tions x�z� and y�z�. We now derive a second equation for
these functions. When the position of the tip changes, the
vortex begins to move in the direction 
1 in the plane per-
pendicular to the vortex. This movement of the vortex in the

perpendicular plane corresponds to its shift at an angle 
̃1
�measured from the x axis� in the x-y plane. A geometrical

consideration shows that this angle 
̃1 is determined by

tan 
̃1 =
tan 	 + cos � tan 
1

1 − cos � tan 	 tan 
1
. �18�

Thus, changes in the functions x�z� and y�z� in time are con-
nected by the relation

dy

dt
= tan 
̃1

dx

dt
. �19�

This is a second equation for the functions x�z� and y�z�.
Since the time t can be expressed in terms of the known
functions X�t�, Y�t� that describe the shift of the tip, Eq. �19�
and its solution �i.e., the shape of the vortex at some moment
t0� depend on the trajectory Y�X� of the tip in the x-y plane at
previous times �t� t0� rather than on a specific form of the
temporal dependences X�t� and Y�t�. This situation is remi-
niscent of the case that occurs in the theory of the critical
states of type-II superconductors when the external magnetic
field Ha applied to a superconducting sample changes in a
complex way.11,12 In this case the critical states are different
for different histories Ha�t� with the same final value of Ha.

Equations �1�–�19� describe the vortex dynamics in thick
superconducting crystals when the tip moves in its x-y plane.
We solve these equations in the next section.

III. RESULTS

The equations of the previous section show that if the
driving-force density fex

� at the surface of the superconductor,
z=0, is lower than a certain threshold fc

� ��� where � is the
angle of fex

� relative to the x axis, the vortex remains pinned,
i.e., x�z�=y�z�=0. In particular, if the driving force acts
along the x or y direction, we obtain the following thresh-
olds: fp

c�
 and fp
c /�
, respectively, which coincide with the

appropriate pinning forces. Here we have used the formulas
of Appendix A and the fact that �=1 /
2�1 /2 at the experi-
mental value1,9 of 
=1.3. Equivalently, these threshold con-
ditions can be rewritten in terms of the total forces, Fx

�Fpx� fp
c��
 and Fy �Fpy � fp

c� /�
. If the driving force ex-
ceeds the threshold values only a little, i.e., if Fx−Fpx�Fx,
or Fy −Fpy �Fy, we find from the equations that x0 or y0
begins to deviate gradually from zero,

x0 �
2��Fx − Fpx�3

�lxFx
2 , y0 �

2��Fy − Fpy�3

�lyFy
2 . �20�

With further increase in the driving force, at Fx�Fpx or Fy
�Fpy but at the same time under the conditions Fx��lx
=
�2�0 or Fy ��ly =�2�0 /
, we arrive at

x0 �
Fx�Fx − 2Fpx�
2
3/2fp

c�2�0

, y0 �

3/2Fy�Fy − 2Fpy�

2fp
c�2�0

. �21�

The additional conditions Fx��lx, Fy ��ly mean that the
characteristic tilt angle � of the vortex is small �see Eqs. �17�
in which x��0�, y��0� are just equal to tan ��. This smallness
of � was assumed in Ref. 1 in analyzing the vortex dynamics,
and formulas �21� coincide with those obtained in that paper.
However, Fpx /�lx, Fpy /�ly are not necessarily small in an
experiment. In this case formulas �21�, strictly speaking,
have no region of applicability. Moreover, boundary condi-
tions �17� show that the characteristic tilt angle � is not small
at typical experimental values of Fx,y 
5–20 pN even when
�lxy 
10 pN. So we do not assume in this paper that tan �
�1. The equations of the previous section have been derived
only under a weaker condition �2 tan2 ��1. But when �
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1, the critical force fc differs from fp even for symmetry
directions.6 For example, when the tip moves along x and
thus the vortex also bends along this direction, formula �A5�
of Appendix A gives

fc
� ��� = fp

c�
, tan2 � �
2


2 − 1;

fc
� ��� =

2fp
c


3/2cos ��
2 − cos2 �, tan2 � �
2


2 − 1, �22�

while for the tip moving along the y axis, one has

fc
� ��� =

fp
c

�

, tan2 � � 2
2 − 1;

fc
� ��� = 2
1/2fp

c cos ��1 − 
2 cos2 �, tan2 � � 2
2 − 1.

�23�

In other words, even at moderate � the critical force begins
to depend on this angle, and the formulas for x0 and y0 be-
come more complicated than Eqs. �21� in which fc

� was as-
sumed to be constant and to coincide with the appropriate
pinning force, fc

� ���= fp
c�
 at 	=0 and fc

� ���= fp
c /�
 at 	

=� /2. Such a dependence of fc
� ��� in general causes that the

ratio y0 /x0 at large driving forces differs from the value 
3

�2.2 that follows from formulas �21�. This may lead to an
imitation of the enhanced pinning anisotropy observed by
Auslaender et al.,1 see below.

During its motion the vortex lags behind the moving tip
until the maximum lateral force is reached at rm=max�x0

2

+y0
2�1/2. At small driving force the vortex will remain at this

rm, whereas at large driving forces the vortex will, in fact,
partially recede after the tip has moved away. Experimentally
the final location of the vortex is evaluated on the returning
path of the tip by monitoring the tip location Rm��X2

+Y2�1/2 at which �Fz /�z is maximum when the tip is above
the vortex �or closest to it�. In Fig. 2 we show the maximum
shift of the vortex end, rm, in the forward direction and Rm on
the returning path of the tip vs. the driving force when the tip
moves either along the x axis or along the y axis. In these
cases the vortex shifts along these symmetric directions, too.
Figure 2 shows that at low driving forces the experimentally
determined Rm accurately reproduces the maximum shift of
the vortex rm whereas at higher forces Rm slightly underesti-
mates the actual rm.

In the construction of Fig. 2, as well as Figs. 3 and 4, we
put 
=1.3 and measure forces in units of the line tension
�lxy ���lx�ly�1/2=�2�0, and lengths in units of � �hence the
force densities fp, fc, fel, and fex

� are in units of �lxy /��. Then,
taking into account the model dependence �2� for the
driving-force density fex

� , one finds that Eqs. �9� and �19� for
x�z� and y�z�, as well as the boundary condition �17�, become
independent of the absolute values of �0, �, and �. They
depend only on the dimensionless forces Fx,y /�2�0 and the
dimensionless parameter P� fp

c� /�2�0. Thus, in a certain
sense Fig. 2 is universal. But in this scaling procedure one
has to bear in mind that if one changes the parameter �
keeping a fixed value of Fx,y /�2�0, this leads to a change in

the tip position X, Y which is not scaled with � �see Eq. �1��.
However, if one is interested only in the tip position when it
is just above the vortex, the scaling still holds in this case.
On the other hand, when the relative positions of the tip and
of the vortex are essential �e.g., in the construction of Figs.
5–13�, we use the following set of input parameters:

� = 0.2 �m, �lxy � ��lx�ly�1/2 = 9 pN,

P =
fp

c�

�lxy
= 0.5,

q

�lxy
= 1.1 �m2, Z + h0 = 0.44 �m.

�24�

The data of Fig. 2 are similar to the data of Fig. 3b in Ref.
1. Moreover, a semiquantitative agreement of these data can
be obtained if one takes � on the order of several tenths of a
micron and �lxy 
10 pN. However, this value of the line
tension �lxy is 10–20 times larger than the theoretical esti-
mate of this quantity, �lxy =�2��0 /�ab�2ln��ab /�ab� / �4��0�,
at �=1 /7, �ab=0.2 �m, and ln��ab /�ab�=4. Thus, apart
from an enhanced anisotropy of pinning discovered by Aus-
laender et al.,1 their experimental data in fact means that
either the vortex has an enhanced line tension, or the model
dependences �1� and �2� for the driving force are oversimpli-
fied under the conditions of the experiment and lead to an
essential overestimation of this force.

In Fig. 3 that is similar to Fig. 4c of Ref. 1, we show the
dependence of the maximum shift of the vortex end, rm, on
the angle 	 at which the tip moves along a straight line in the
x-y plane at a certain height Z above the surface of the su-
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FIG. 2. Dependence of the maximum shift of the vortex end,
rm�max�x0

2+y0
2�1/2, on the driving-force Fmx or Fmy when the tip

moves along the x axis �	=0� or the y axis �	=� /2�. The forces
are measured in units of the line tension �lxy ��2�0, the lengths in
units of �, 
=1.3, and P� fp

c� /�lxy =0.5. The dashed lines show the
appropriate X and Y positions of the tip, Rm��X2+Y2�1/2, at which
the derivative �Fz /�z reaches its maximum on the returning path.
As an example, the Y dependence of this derivative at �=� /2 and
Fmy /�lxy �2.2 is presented in the inset. The circles in the inset mark
the virgin curve, and the arrows indicate the direction of the tip
motion.
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perconductor. This height determines the maximum driving-
force Fm applied to the vortex, and in Fig. 3 this height is
chosen so that Fm /�lxy �2.2. For comparison, we again show
the positions of the tip, Rm��X2+Y2�1/2, at which the deriva-
tive �Fz /�z reaches its maximum. The anisotropy of the vor-
tex shift, rm�	=� /2� /rm�	=0��2.5, seen in the figure ap-
proximately coincides with the ratio Rm�	=� /2� /Rm�	=0�,
and at 
=1.3 this anisotropy is lower than the appropriate
experimental value 
3.5.1 This experimental value can be
fitted if one takes 
=1.43. Thus, although this 
=1.43 ob-
tained with taking into account the � dependence of fc

� is less
than 
=1.6 derived in the simplified analysis,1 our approach
still cannot completely describe the enhanced anisotropy of
pinning within the framework of collective pinning theory by
point defects. Auslaender et al.1 suggested that this enhanced
anisotropy is due to a clustering of the point defects.

Interestingly, when the tip moves along a straight line
different from the x and y axes, the trajectory of the vortex
end performs a “hysteresis loop” with its axis deviating from
the direction of tip motion, Fig. 4. Also depicted in Fig. 4 is
the six times enlarged path near the first and the second
turns, showing that the vortex end reaches maximum elon-
gation, then it recedes when the tip moves away, and when
the tip returns, the vortex end approaches the tip and reaches
maximum elongation a second time. These results clearly
demonstrate that the vortex in general moves in a direction
different from the direction of the tip motion, and that the
vortex position depends on the trajectory of the tip at previ-
ous times.

In Ref. 1 the derivative ��Fz /�z� was measured when the
tip oscillates with a large amplitude along some line and at
the same time it is slowly shifted in the perpendicular direc-
tion. In this case an enhanced shift of the vortex along the

slow scan direction was discovered �see Figs. 1 and 2 in Ref.
1�. We have investigated this situation theoretically. In Fig. 5
the zigzag path x0�t�, y0�t� of the vortex end is presented
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=1.3, this loop is tilted away from the tip path �	=� /4� toward the
y axis. Also depicted is the six times enlarged and shifted path near
the first and the second turns. The dots on the curves are at equi-
distant times.
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FIG. 5. The zigzag path x0�t�, y0�t� of the vortex end �bold lines
in the center� when the tip oscillates with large amplitude a
=1.6 �m along x and at the same time moves slowly up along y,

with Ẏ / 	Ẋ	=1 /80. Tip and vortex start at x=y=0. Length unit is
�m, 
=1.3, the other parameters are listed in Eqs. �24�. The aspect
ratio of this path is max�y0� /max�x0��3.7. The almost horizontal
dotted lines at equidistant y=yi show the tip path when it moves
from the left to the right �see arrows� and serve as zero lines for the
force derivative g�x ,yi�=�Fz /�z plotted versus x as yi

+0.2·G�x ,yi� �solid lines� with G=g /max�	g	�. Note that these
curves are asymmetric due to the unidirectional tip motion shown
here. The return path yields similar curves, obtained from the de-
picted curves by the reflection x→−x.
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when the tip oscillates with a large amplitude along x and at
the same time moves slowly up along y. We also show the X
profiles of ��Fz /�z� at various fixed values of Y. Note that
these profiles are asymmetric and are different for tip motion
from left to right and from right to left. The data of Fig. 5
qualitatively reproduces the experimental data.1 Interestingly,
this figure also clearly shows how the elastic force drags the
vortex back toward the origin when the tip goes far away
from the vortex.

In Fig. 6 we compare the vortex paths for various ratios of
the scan rates along x and y. It is seen that the results are
different for different rates although we do not take into ac-
count the effect of vortex creep here. This difference in the
vortex paths is due to the above-mentioned dependence of
the vortex position on the trajectory of the tip at previous
times. In this figure we also present the vortex-shape func-
tions x�z� and y�z� at some moment of time. These functions
show that during the zigzag motion the vortex is bent and
twisted into a complicated shape. The lower part z�z0 of the
vortex is rigidly pinned �has exactly x=y=0� and at the sur-
face z=0 the vortex ends perpendicularly. We find that for
the tip motion of Fig. 6, at z�z0 the component y�z� in-
creases with z monotonically, while x�z� after several scan
periods exhibits strongly damped oscillations.

In Fig. 7 we analyze the dependence of the zigzag vortex
motion on the anisotropy parameter 
. It is clear from the
figure that the shift of the vortex end in the slow scan direc-
tion and the aspect ratio max�y0� /max�x0� increase13 with
increasing 
. But importantly, even in the case of isotropic
pinning in the x-y plane, i.e., at 
=1, this aspect ratio re-
mains considerably larger than unity. From a qualitative
point of view, this enhanced tilt of the vortex along y is
caused by the fact that during the zigzag motion the vortex
predominately moves in the x direction, the pinning force is
also directed mainly along x, and hence this force opposes
only the vortex tilt in the x direction. These considerations
are supported by the data of Fig. 8 in which for the case of a

small � we show x�z�, the maximum displacement of the
vortex when the tip moves only along the x axis �i.e., during
the first oscillation of the tip in the left plot of Fig. 7�, and
y�x� at the moment when y0 reaches its maximum value after
many oscillations of the tip. Since at small � the driving
force concentrates near the surface of the superconductor, in
the bulk of the sample the elastic force associated with the
curvature of the vortex has to be balanced mainly by the
pinning force. Then, the long straight segment of the line
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FIG. 6. The zigzag path x0�t�, y0�t� of the vortex end as in Fig.

5 but at Ẏ / 	Ẋ	=1 /40 �left plot, max�y0� /max�x0��3.6� and at

Ẏ / 	Ẋ	=1 /160 �middle plot, max�y0� /max�x0�=4.1�. The right plot
shows the vortex shape expressed as x�z� �solid line with circles�
and y�z� �solid line with dots� at the moment when x0=0.05, y0

=0.3 in the left plot. The dashed lines show these functions at three
previous time steps.

−0.2 0 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

y

ζ = 1.5

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

y

ζ = 1

FIG. 7. The zigzag path x0�t�, y0�t� of the vortex end as in Fig.
5 but for 
=1 �left plot� and 
=1.5 �right plot�. The aspect ratio
max�y0� /max�x0� is approximately 2.2 for 
=1 and 5.5 for 
=1.5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

x, y

z

−0.6 −0.4 −0.2 0
0

0.5

1

1.5

z

x’
,

y’

parabola

parabola

straight
line

z
0

y(z)

x(z)

x’(z)

y’(z)

FIG. 8. The vortex shape during oscillations of the magnetic tip
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take �ab=0.05 �m and P=0.25 here. Shown are the maximum
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y�z� shown in Fig. 8 means that the y component of the
pinning force is practically absent in this segment.

Some insight into the origin of the vortex-motion aniso-
tropy seen in Fig. 7 can be also obtained from a simplified
two-dimensional �2D� model. In this model we disregard the
dynamics of the entire vortex and consider only the vortex
end as a point �x0 ,y0� elastically connected to the origin of
the x-y plane, Fel=−�kxx0 ,kyy0�, where kx and ky =kx /
2 are
some spring constants modeling the elasticity of the vortex.
In this simplified approach the problem of the vortex motion
becomes two-dimensional, and instead of the force densities
we deal with the elastic force Fel, the total pinning force Fp,
and the driving-force Flat= �Fx ,Fy� determined by Eq. �1�.
The balance of these three forces and the vortex-end motion
can be still described by the equations of Sec. II if one puts
�=	=0 and replaces the force densities by the total forces in
the equations. Interestingly, in this simplified 2D approach
one can qualitatively reproduce the main results which have
been obtained above accounting for the real three-
dimensional �3D� shape of the vortex. In particular, in Fig. 9
we show the zigzag path of the vortex end in the case 
=1
�isotropic elasticity and pinning in the x-y plane�. In the con-
struction of this figure we use the same parameters for the tip
as in Fig. 7 �i.e., we have Fm�20 pN�. Besides this, we take
Fp=Fm /4�5 pN. This relation also corresponds to the case
of Fig. 7 if one implies that Fp for the 2D model is equal to
fp

c�. Such choice of Fp is dictated by a comparison of the
conditions Fm�Fp and Fm� fp

c� for a vortex to start to move
in the simplified 2D model and in the 3D theory. The spring
constant in Fig. 9 is chosen such that max�x0� is the same as
in the left plot of Fig. 7. The vortex trajectory presented in
Fig. 9 reveals the anisotropy of the vortex motion in the y
and x directions with the aspect ratio r�max�y0� /max�x0�
�1.24. This anisotropy can be understood from the follow-
ing simple considerations: The maximum displacement of
the vortex end along x is found from

max�x0� =
Fm − Fp

k
, �25�

where Fm is the maximum value of the driving force and k
�kx. The y0 reaches its maximum when x0�0, the vortex-
end velocity v is practically parallel to x, and thus the pin-
ning force is along this axis, too, �Fig. 9�. The driving force
at this moment is maximum, F=Fm, and is directed at an
angle � with respect to the x axis, while the elastic force acts
toward the origin. Then, the force balance for the x and y
components gives

Fm cos � = Fp, Fm sin � = k max�y0� , �26�

and hence max�y0�=Fm sin � /k=�Fm
2 −Fp

2 /k. The aspect ra-
tio is therefore

r =
max�y0�
max�x0�

=�Fm + Fp

Fm − Fp
� 1, �27�

and it is independent of k. If Fm→Fp the ratio r diverges, but
in this case the vortex displacements are small and become
less than the vortex radius which is on the order of �ab for
MFM. For Fm and Fp of Fig. 9 formula �27� yields the aspect

ratio r=�5 /3�1.29, which is indeed close to that found in
this figure.

In Fig. 10 we analyze one more effect that was observed
experimentally �see Figs. 4c and 4d in Ref. 1�. At the initial-
time t=0, the straight vortex is at x=y=0. The tip oscillates
along x with a large amplitude and slowly approaches the
vortex from large positive y. At a certain time the end of the
vortex abruptly jumps to the tip and then begins to oscillate
with a large amplitude. This effect of a sharp onset of the
signal is qualitatively reproduced by our Fig. 10. A close
look to Fig. 10 shows that the large jump of the vortex end is
composed of several jumps of width increasing nearly expo-
nentially in time. These multiple jumps are even better seen
in Fig. 11 that shows how the vortex end moves when the tip
oscillates along y and slowly moves along x starting far away
from the waiting vortex. As compared to the corresponding
Figs. 5, 6, and 10 which are described by the same param-
eters and have a vortex-path aspect ratio max�y0� /max�x0�
�4, in Fig. 11 the aspect ratio max�x0� /max�y0��1.3 is
smaller than even that for the isotropic case ��2.2� since the
pinning anisotropy now impedes13 the vortex motion in the x
direction.

In Fig. 12 we reproduce one more experiment described
in Ref. 1 �in the supplementary material�. In this experiment
the tip oscillates along a straight line at t�0 and does not
shift in the perpendicular direction. The vortex that waits at
some distance from the line of the tip oscillations at t�0, at
t�0 begins to move toward the tip. Figure 12 shows this
attraction process for the isotropic case 
=1 and for the tip-
oscillations line parallel to the x axis. The initial shift y0�0�
of the vortex end along y occurs at t�0 when the tip ap-
proaches its starting point from large positive Y. This shift
occurs if the driving force at t=0 exceeds the appropriate
pinning force Fp= fp

c�. If the initial distance of the vortex
from the tip-oscillations line is so large that the driving force
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FIG. 9. �Color online� Path of the vortex end and force balance
for a simplified 2D model, see text. The tip moves as in Fig. 7, the
left plot. Here Z+h0=0.44 �m, q=9.9 �m2·pN �which gives Fm

�20 pN�; Fp=Fm /4; 
=1; kx=k=32 pN /�m; x and y are mea-
sured in �m. The aspect ratio r�max�y0� /max�y0��1.24. The
force balance is shown for the point �x0 ,y0�= �0,max�y0��.
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is less than this pinning force, the vortex end remains pinned
and does not move toward the tip. A more restrictive neces-
sary condition for the vortex motion toward the tip is that the
vortex can oscillate along x. This condition yields

�Y − y0�0��2 � −
�Z + h0�2

2
+��Z + h0�4

4
+

q2

9Fp
2 . �28�

From numerical calculations we find �see Fig. 13� that there
exists a distinct upper threshold for the distance �Y −y0�0��
between the vortex end and the tip-oscillation line at which
the attraction process can occur, and this threshold is close to
that given by Eq. �28�.14 If this threshold is indeed deter-
mined by the pinning forces and the dependence of the
driving-force F on X−x0 and Y −y0 is known, this effect may
allow sensitive measurements of these pinning forces acting
on an individual vortex in type-II superconductors.
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FIG. 10. Path of the vortex end when the tip oscillates along x
with large amplitude and moves down from large positive Y �2 to
large-negative Y �−2 �left plot� and then moves up again to large
positive Y �2 �right plot�. The straight vortex waits at x=y=0.
When the tip approaches from above, the vortex end suddenly
jumps to the tip and starts to oscillate with large amplitude, follow-
ing the tip downwards. After some time the vortex end comes to a
halt as in Figs. 5–7. When the oscillating tip approaches again from
below, the vortex end starts to oscillate with slowly increasing am-
plitude along a path that looks similar to the path on which the
vortex end came to a halt. The vortex paths shown at the lower left
and at the upper right are nearly identical. The parameters are as in
the left plot of Fig. 6.
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FIG. 12. Attraction of the vortex end to the oscillating tip. The
magnetic tip oscillates with amplitude a=1.4 along the straight-line
Y =0.8 parallel to the x axis, starting from X=0 at time t=0. When
the tip approaches the starting point from large positive Y, the vor-
tex end shifts to y0�0.11, attracted by the tip. At t�0 the vortex
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vortex end jumps in a few big leaps to its maximum y0�0.73. After
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is a quarter of the tip period, the parameters are as in Fig. 10, but for
simplicity we take 
=1 here.
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When the tip oscillates, it generates currents whose orien-
tation changes in time near the vortex, and the vortex motion
toward the tip in Fig. 12 as well as the enhanced vortex
response in the slow scan direction in Figs. 5–7 are reminis-
cent of the so-called longitudinal vortex shaking effect.15 In
this effect, in essence, a small ac current is superimposed
perpendicularly to a dc critical current that flows in a sample.
This leads not only to a periodic tilt of vortices but also to
their unidirectional drift along the direction of the ac current
and causes a dc electric field along the dc current. In the
considered case of the oscillating tip the currents flow only
near the surface of the superconductor, and only the upper,
depinned part of the vortex “drifts.”

IV. CONCLUSIONS

We derive equations that describe the deformation of an
individual vortex in anisotropic type-II superconductors un-
der the influence of the moving tip of a magnetic force mi-
croscope. These equations take into account the driving force
generated by the tip, the elastic force caused by the vortex
deformation, and the pinning force exerted by point defects.
These equations are valid even at large deformations of the
vortex, and they properly allow for the biaxial anisotropy of
the superconductor. From these equations, we reproduce the
main features of the experimental data obtained recently.1 In
particular, we explain the enhanced response of the vortex to
pulling in the slow scan direction as compared to its response
in the direction of the fast zigzag scan. We demonstrate that
the vortex position at time t depends on the trajectory of the
tip at previous times, and it is this property that eventually
leads to the enhanced vortex response in the slow scan di-

rection. We also point out that the enhanced anisotropy of
pinning in the a-b plane that was observed in Ref. 1 is partly
caused by the fact that the critical force at which the vortex
starts to move depends on the angle � of the vortex tilt and in
general does not coincide with the pinning force.

We note a still unresolved problem. In order to obtain
quantitative agreement of our calculations with the experi-
mental data, we have to take a larger value of the vortex line
tension than the value following from the theoretical esti-
mate. The small line tension 
�2�0 of a vortex in an aniso-
tropic bulk superconductor results from the almost complete
cancellation of the increase in the length of a tilted vortex
and the decrease of its energy per unit length, el���
��0 cos �, with increasing tilt angle �.7 The existence of the
surface at z=0 and of the tip changes the energy el��� in the
surface layer of depth � and, consequently, the almost com-
plete cancellation does not occur there. The line tension of a
vortex segment near the surface may thus be noticeably
larger than the tension in the bulk. The discrepancy also may
be due to the too simple expressions for the lateral driving
force �see Eqs. �1� and �2��. Since the penetration depth � of
the driving force should be on the order of �ab, this � is
comparable with the experimental values of Z+h0. In this
situation the correct driving force acting on a curved vortex
at small distances R
Z+h0 from the tip, is likely to be given
by formulas more complicated than Eqs. �1� and �2�. But Eq.
�1� was, in fact, used in the experiment1 for the extraction of
the lateral driving force, which might lead to some overesti-
mation of this force. Thus, a more detailed theoretical inves-
tigation of the driving force and the nonlocal line tension
near the surface is needed.

One more problem that should be studied both theoreti-
cally and experimentally is the vortex-motion randomness
that is superimposed on the regular vortex motion considered
here. This randomness is clearly seen in the experimental
data of Auslaender et al.1 It is quite possible that apart from
point defects and the weak collective pinning associated with
them, in the sample there may be strong pinning centers, e.g.,
the clusters of point defects discussed in Ref. 1, that lead to
the observed randomness.
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APPENDIX A: FORMULAS FOR THE CRITICAL FORCE

Taking into account formulas �7� and �8�, we obtain the
following explicit form of Eqs. �11� and �12�:

tan 
 =
N�
1�
D�
1�

, �A1�
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FIG. 13. Attraction of the vortex end �x0 ,y0� to the tip oscillat-
ing along x at constant Y as in Fig. 12 but for various distances Y
=0.79, . . . ,0.85. Plotted is the maximum value ymax of y0 in each
half oscillation vs. time t. For 0.79�Y �0.81 this ymax is slowly
increasing and then suddenly jumps to a saturation value �0.73
within about five half oscillations. At Y =0.81 this steep jump oc-
curs only at t=1500 �after 375 oscillations�. For Y �0.815, ymax

saturates exponentially in t to a small value �0.114, and thus there
is no jump. All parameters and units are the same as in Fig. 12.
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fc�
� = fp�
1��1 +
�����,	,
1��2

�2��,	,
1� �1/2

, �A2�

where fp�
1�= fp�� ,	 ,
1� is given by Eq. �7�, the prime
means d /d
1,

N = � tan3 
1 + 1.5�
 tan2 
1 cos � sin 2	

+ tan 
1�2�1 cos2 � − �� − 0.5�
 cos � sin 2	 ,

D = �1 cos2 � + 1.5�
 tan 
1 cos � sin 2	 + tan2 
1�2�

− �1 cos2 �� − 0.5�
 tan3 
1 cos � sin 2	 ,

	��	
�

=
�
 cos � sin 2	 cos 2
1 + sin 2
1�� − cos2 ��1�

�
 cos � sin 2	 sin 2
1 +2 cos2 
1 cos2 ��1 +2 sin2 
1�
,

�A3�

and �
�
−
−1, ����	�, and �1���	+� /2�. Equation
�A1� permits one to find the auxiliary angle 
1 in terms of 
,
and then one can calculate fc from Eq. �A2�.

Let us define the parameter � by the formula

2� � � �

cos �
+ �1 cos � −�� �

cos �
+ �1 cos ��2

− 1�2

.

�A4�

For example, if 	=0, one has �=cos2 � /
2, while if 	
=� /2, we obtain �=min�cos2 �
2 , �cos2 �
2�−1�. If the pa-
rameter � is larger than 1/2, there is a one-to-one correspon-
dence between 
 and 
1. At ��1 /2 the situation changes.6

In this case spurious branches of 
1�
� appear. The physical
branch corresponds to a minimum value of fc. For example,
in the case ��1 /2 one finds the following expression for the
critical force at 
=0 and 	=0 or 	=� /2:

fc�
 = 0;	 = 0,�/2� = 2fp0
���1 − �� , �A5�

where fp0= fp
c�
 at 	=0 and fp0= fp

c /�
 at 	=� /2. On the
other hand, at ��1 /2 one has fc�
=0;	=0,� /2�= fp0 in-
stead of formula �A5�.
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